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Dual steady solutions in natural convection in an annulus between two horizontal concen- 
tric cylinders are numerically investigated for a fluid of Prandtl number 0.7. It is found that, 
when the Rayleigh number based on the gap width exceeds a certain critical value, dual 
steady two-dimensional (2-D) f lows can be realized: one being the crescent-shaped eddy 
f low commonly observed and the other the f low consisting of two counter-rotating eddies 
and their mirror images. The critical Rayleigh number decreases as the inverse relative gap 
width increases. © 1996 by Elsevier Science Inc. 
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I n t r o d u c t i o n  

Natural convection in a horizontal concentric cylindrical annuls 
kept at constant surface temperatures has been received much 
attention because of theoretical interest and wide engineering 
applications, such as thermal energy storage systems, cooling of 
electronic components, and transmission cables. A comprehen- 
sive review of steady two-dimensional (2-D) convection was pre- 
sented in the work of Kuehn and Goldstein (1976), in which 
experimental and numerical studies were performed to deter- 
mine velocity and temperature distributions and local heat trans- 
fer coefficients for convective flows of air and water within a 
horizontal annulus. 

Extensive experimental investigations classifying flow patterns 
were conducted by Powe et al. (1969). They found that the free 
convective flow of air can be neatly categorized into four basic 
types depending upon the Grashop number (or Rayleigh num- 
ber) and the inverse relative gap width tr ( =  diameter of the 
inner cylinder/gap width), and delineated different flow regimes 
(see Figure 8). For sufficiently small Rayleigh number, a steady 
2-D flow with two crescent-shaped eddies symmetric with respect 
to the vertical plane through the common center of cylinders 
occurs regardless of tr. As the Raylcigh number was increased 
above a critical value, different unsteady flow patterns were 
observed, depending on tr: a 2-D oscillatory flow for cr < 2.8 
(wide gap), a three-dimensional (3-D) spiral flow for 2.8 < cr < 8.5 
(medium-sized gap), and a 2-D multiceUular flow for tr > 8.5 
(narrow gap). Some values of the critical Rayleigh numbers were 
Ra~ = 7 × 104 for cr = 2; R a ,  = 2000 for cr = 4.76; and Racr --- 
4900 for tr = 10. More recently, Rao et al. (1985) carried out 
numerical and experimental investigations of flow pattern classi- 
fication. The general trend was consistent with that of Powe et 
al., except for the case of wide annulus (~r < 2.8) in which they 
failed to realize the 2-D oscillatory flow numerically. For a 
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narrow annulus (tr > 8.5), with increase of Ra, the steady unicel- 
lular flow pattern changed into a steady multicellular flow pat- 
tern when the Rayleigh number exceeded a critical value, and 
the further increase of the Rayleigh number created an oscilla- 
tory multiceltular flow pattern. 

Thermal convection of fluids with low Prandtl number such as 
liquid metals, exhibits more complicated flow patterns for high 
Rayleigh numbers (Mack and Bishop 1968; Custer and 
Shaughnessy 1977; Charrier-Mojtabi et al. 1979; Fant et al. 1990; 
Yoo et al. 1994). Especially, Fant et al. studied unsteady natural 
convection for the limiting case of Pr = 0. They simplified the 
Boussinesq approximated Navier-Stokes equations into Carte- 
sian-like boundary-layer equations by means of a high Rayleigh 
number, small-gap asymptotic theory. They found that a steady 
multicellular instability sets in first, and then time-periodic and 
complex unsteady multicellular flows develop as the scaled gap 
spacing increases. Recently, Yoo et al. investigated the 2-D 
natural convection of a low Prandtl number (Pr = 0.2) fluid in a 
wide range of gap widths. They solved the complete 2-D 
Navier-Stokes equations and the energy equation without ap- 
proximations, such as those of Fant et al. From the numerical 
experiment, Yoo et al. observed steady and oscillatory like-rotat- 
ing multicellular flow patterns that originated from the hydrody- 
namic type of instability. The results were as follows. For low 
Grashof numbers, a steady unicellular convection was obtained. 
Above a transition Grashof number that depends on the gap 
width, a steady bicellular flow occurred. With further increase of 
the Grashof number, steady or time-periodic multicellular con- 
vection occurred. Finally, complex oscillatory multicellular flow 
appeared. They plotted the transition Grashoff number at which 
the types of flow patterns were altered as functions of inverse 
relative gap width cr and showed that the actual behavior of the 
oscillatory flow was different from the result of Fant et al., where 
some approximations were made. 

In this numerical study, the present author reports that if the 
Rayleigh number based on the gap width is greater than a 
certain critical value, dual steady solutions are realized in the 
flow regime in which both Powe et al. (1969) and Rao et al. 
(1985) have confirmed that a steady 2-D flow prevails. When the 
Rayleigh number is small, the crescent-shaped eddy pattern 
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appears over the whole range of tr. However, if the Rayleigh 
number is larger than a critical value that depends on the gap 
width, two kinds of flow patterns are realized according to initial 
conditions: one is the commonly observed crescent-shaped pat- 
tern in which the fluid ascends along the central plane when the 
inner cylinder is kept hotter (designated as "upward" flow), and 
the other, the flow consisting of two counter-rotating eddies and 
their mirror image ("downward" flow) (see Figure 3). Although 
multiple steady solutions for several hydrodynamic problems 
(Taylor problem, Dean problem etc.) have been investigated 
experimentally and theoretically, (Yoo and Kim 1991; 
Zandbergen et al. 1987; Dennis and Ng 1982; Benjamin and 
Mullin 1982; Nandakumar et al. 1985) the existence of dual 
solutions for the natural convection in a horizontal annulus has 
never been reported in any of the numerical and/or experimen- 
tal studies as far as the present author is aware. 

The occurrence of dual steady states at a given Rayleigh 
number larger than a critical value can be regarded as an 
example of bifurcation phenomena. The distribution of local 
Nusselt number for "downward flow" is significantly different 
from that for "upward flow," especially in the upper region, as 
the buoyant plume separates at a point other than the top of the 
inner cylinder for "downward flow." However, the overall Nusselt 
number is little affected by the type of flows. 

Analysis 

The geometry of the problem and the coordinate system are 
shown in Figure 1. The fluid is contained between two infinite 
horizontal concentric circular cylinders, which are held at differ- 
ent uniform temperatures of 7]/ and T O ( T  i > To). Density change 
in the fluid is neglected everywhere except in the buoyancy, and 
all the other physical properties of the fluid are assumed 
constant (Boussinesq approximation). Viscous dissipation in the 
energy equation is also neglected. We use the cylindrical coordi- 
nates r,+, the angular coordinate qb being measured counter- 
clockwise from the upward vertical through the center of the 
cylinders. The equations governing conservation of mass, mo- 
mentum and, energy are put into nondimensional form by taking 
the characteristic length, time, velocity, pressure, and tempera- 
ture as L ( = R  o - R i ) ,  L2/K, K/L, P0K2/L 2 and (T i -  To), re- 
spectively. We let Pr = v / K  and Ra = a g ( T  i - T o ) L 3 / K v  denote 
the Prandtl and Rayleigh numbers, respectively. 

Figure I 

Ro 

> To ) 
Problem configuration 

The dimensionless equations governing the 2-D convection 
a r e  

- -  = J(~,to) + Pr Vzto - PrRa s i n ( + ) - -  + cos(+) (1) 
at 

tO = --V2a~ t ( 2 )  

a0 
- -  = J ( q t , 0 )  + V20 ( 3 )  
at 

where the vorticity to, streamfunction ~ ,  Jacobian J(f, g) and 
Laplacian V 2 are 

a a a ~  a ~  

( 7d-  ( . . . .  to = r v ) -  u) ,  u = rOtb ' v ar 

! [ or og) 
J ( f ' g )  = r ~ Or O~b O~b Or 

O ( r O  ) 02 
~ 2 =  - -  

rOr -~r + r20~b 2 
(4) 

Notation 

D i 

g 
J 
L 

Nu 

Nucond 
Nui, Nu o 

rc<,,r o 

P r  

Ri,  Ro 

Ra 

r~,ro 

diameter of inner cylinder 
acceleration of gravity 
Jacobian 
gap width of the annulus, R o - R i 
overall Nusselt number, ~ + lq~o)/2 
Nusselt number of pure conduction state 
local Nusselt numbers at the inner and 
outer cylinders, respectively 
mean Nusselt numbers at the inner and 
outer cylinders, respectively 
Prandtl number, V / K  
radii of the inner and outer cylinders, 
respectively 
Rayleigh number based on the gap width, 
e~g(T i - Zo)L3 /KV 
dimensionless radii of the inner and outer 
cylinders, respectively, r /= R J L ( =  ~r/2), 
r o = R o l L (  = 1 + ~r/2) 

t 
r~,ro 

Greek 

(3t 
~q 

0 
K 

V 

P0 
O" 

+ 
+s 

to 

dimensionless time 
temperatures at the inner and the outer 
cylinders, respectively 

coefficient of thermal expansion 
stretched coordinate in the radial direction 
dimensionless temperature 
thermal diffusivity 
kinematic viscosity 
mean density 
ratio of the inner cylinder diameter to gap 
width, D i l L  
azimuthal coordinate 
angle locating the separation point between 
two rolls in the "downward" flow, Figure 3b 
dimensionless stream function 
dimensionless vorticity 
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The boundary conditions on the two walls are 

O~lt a 2 .tI.t 

= Or = 0, to = - - -  0 = 1 at r = r  i (5) 
Or 2 ' 

O~' 02"//` 
q~= Or = 0 ,  c o = - - -  0 = 0  at r = r  o (6) ar 2 ' 

We impose following symmetric conditions 

a2~  a0 
• =co = 0  at qb=0,~r (7) a+ 2 a+ 

because we suppose the flow to be symmetric with respect to the 
vertical plane through the center of cylinders. 

The dimensionless heat transfer rate of pure conduction in 
the absence of fluid motion is 

1 
NUcond l n ( ro / r i  ) (8) 

The local Nusselt number is defined as the actual heat flux 
divided by Nucond, 

Nui(qb) = -  r Ucond at r = r i  (9) 

N U o 0 b ) = -  r u~o.a at r = r  o (10) 

and the mean Nusseit n u m b e r s / ~ / a n d  1 ~ o  are given by 

1 'ff 

Nui = "~fJ0 Nui(tb) d~b (11) 

1 'Ix 

Nu° = -~fJ0 Nu°(~)  d~ (12) 

In steady states, ~ and 1~o  are presumably of the same value. 
Equations 1-7 are solved numerically, by the same finite 

difference method used in Yoo et al. (1994) and Yoo and Kim 
(1991). Equations 1 and 3 are cast into finite difference form 
using the leap-frog method (Roache 1972) of Dufort-Frankel for 
the diffusion and time derivative terms, with central differencing 
for the Jacobian. The Poisson equation, Equation 2, for the 
stream function is discretized by use of five-point formula. Be- 
cause the computational domain is rectangular, the discretized 
Poisson equation is solved by the direct method of Buzbee et al. 
(1970), which uses cyclic even-odd reduction method. The algo- 
rithm of Buzbee et al. is known to be extremely fast and 
accurate. In the azimuthal direction, a uniform grid is employed, 
and in the radial direction, the following coordinate stretching is 
utilized. 

1{  tanh[C(2n - 1)] ) 
r = r  i + - ~  1 +  t ~ )  w i t h C = l . 5  0 < ~ q < l  

(13) 

The solution was considered to have converged to the steady 
state, when the absolute value of the maximum relative differ- 
ence between two consecutive time steps was less than a pre- 
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scribed value e: 

f'n+ 1 fn  
M a x  J i 'L  - J i . j  f.n? 1 < e  for f = t o , ~ a n d 0  (14) 

J I , J  

For most cases, e was set equal to 10 -5, but computation was 
often continued until e =  10 -1° to be sure that the steady 
downward flow really persists. The time step At was taken in the 
range of 10 -5 < At < 10 -2. At the initial stage, a small time step 
At = 10 -5 was used, and later on At was changed to a larger 
value At = 10 -3. According to the values of inverse relative gap 
width cr, different grids were used: (55 x 65) for ,r < 2; (35 X 33) 
for ~r = 2,3; (21 X 65) for cr = 4; and (17 x 129) for cr = 6,8,10. 

Results and Discussion 

To check the numerical scheme, the mean Nusselt number is 
compared with that of Kuehn and Goldstein (1976) at Ra = 104 
for various values of ~. The result shows good agreement with 
that of Kuehn and Goldstein except in the case of cr = 10 (Table 
1). The discrepancy is most certainly due to the coarse mesh 
(16 x 19) adopted by Kuehn and Goldstein, because the present 
method obtained the mean Nusselt numbers lq-~= 1.271 and 
l ~ o  = 1.274 with (16 x 17) grid. 

Computations were performed for various combinations of 
Ra and cr in the range of 103 < Ra < 2 x 105 and 0.1 < ~ < 10, 
for a Prandtl number of 0.7(air). A series of numerical calcula- 
tions was set out by choosing a large value of Ra after having 
fixed or. The system of Equations 1-3 was integrated with initial 
conditions of t~ = to = 0 and 0 = 1 throughout the entire region, 
until a converged steady solution was obtained. In the case of a 
not large cr (tr < 6), artificial numerical disturbances were intro- 
duced during a short initial period (t ~ 0.01), to enhance the 
separation of boundary layer from a point other than the top of 
inner cylinder. Once having obtained the steady "downward" 
flow, the Rayleigh number was decreased, and the steady solu- 
tion was found by letting the initial conditions be the steady 
solution previously obtained, to save the computation time. This 
process was carried out successively until only the "upward" flow 
was realized (down-scan). Then, with increase of Ra (up-scan), 
steady solutions for the same Rayleigh numbers as down-scan 
stage were obtained. All the steady solutions at up-scan stage 
were found to be "upward" flows (see Figure 2). 

Firstly, the results for t~ = 1.25, an annulus with a wide gap, is 
presented. Dual steady solutions are observed when the Rayleigh 
number is larger than a critical value Racr about 3800, and for 
Ra < Racr, only the crescent-shaped flow is realized, regardless 
of the initial condition. A few streamlines and isotherms are 
depicted in Figure 3. As shown in the figure, the "downward" 
flow consists of a small counter-rotating eddy in the top region of 
the gap sitting above a large one. The small eddy is approxi- 
mately square-shaped, and the size is not much affected by Ra. 
The value of IOminl, which may be considered as a measure of the 

Table 1 Comparison of Nusselt numbers with those 
of Kuehn and Goldstein (1976) at Ra= 10,000 

Present Kuehn and Goldstein (1976) 
NU.~o ]~,l~-~o 

0.125 (1.835, 1.922) (1.878, 2.O51) 
0.5 (2.082,2.109) (2.148, 2.157) 
1.0 (2.022, 2.037) (2.O61,2.059) 
1.25 (1.973, 1.985) (2.O1 O, 2.005) 
2.0 (1.837, 1.848) (1.850, 1.853) 
10.0 (1.562, 1.567) (1.271,1.276) 
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~ , A o ' ~ ~  

(upward f low))  A (upward flow) 

Racr ( ~ Ra) 
Figure 2 Bifurcation diagram for the "downward"  and "up- 
ward"  flows; the transition from "upward"  to "downward'"  
f low does not occur; only a transition from "downward"  to 
"upward"  f low occurs at Ra= Racr 

strength of the small counter-rotating eddy, diminishes rapidly as 
the Rayleigh number decreases to the critical value Racr (Figure 
4). For "downward" flow, the point of t~ma x (indicated by the 
cross), which would be the center of rotation of large eddy, 
moves slightly upwards as the Rayleigh number increases, but 
stays near d~ = 90 ° when the Rayleigh number is not much larger 
than Racr. The temperature distribution of "downward" flow 
differs significantly from that of "upward" flow, especially in the 
top region. Figure 5 shows the distribution of local Nusselt 
numbers for the inner and outer cylinders at two values of Ra. 
Although the distribution of local Nusselt numbers for "upward" 
and "downward" flows are significantly different from each other 

~b a~ 

(b) 

2 

(c) { 

Log(~b) 1 

0 

~" / (b .Z)  

I I I I I I I I I I I I ! I I I I ! I 

3 4 5 
Log(Ra) 

Figure 4 Maximum and minimum values of stream func- 
tion as a function of Rayleigh number when cr= 1.25: (a) 
t~ma × of upward flow; (b.1) ~Jmax of downward flow; (b.2) 
-~min of downward f low 

except at the bottom region, the difference in overall Nusselt 
numbers is rather small; Nu for "downward" flow is larger than 
that for "upward" flow within 9%. 

For an annulus with a medium-sized gap (2.8 < ~r < 8.5), the 
features of steady solutions are similar to those for a wide gap. 
Plots of streamlines and isotherms are given in Figure 6, for 
~r = 4 and Ra = 3000, a value near the critical Rayleigh number. 

12- 

8 

Nu o 

4 

b.2) 

t) 

o l n e l l e ° I 9 ~  uenll 

6- 

Figure 3 Streamlines and isotherms when or= 1.25; the left 
are downward f lows and the right are upward flows: (a) 
Ra=3000;  (b) Ra=4000;  (c) Ra=50,O00; the streamlines 
and isotherms of upward flows are similar to those given by 
Kuehn and Goldstein (1976) 

180 

~b.1) 

0 90 180 ~p(deg) 
Figure 5 Distribution of local Nusselt numbers at the inner 
and outer cylinders with or= 1.25 when Ra----4000 (a.1, a.2) 
and Ra=50,O00 (b.1, b.2); (a.1) and (b.1) downward flow; 
(a.2) and (b,2) upward f low 
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(a) (b) 
Figure 6 Streamlines and isotherms when (r=4 and Ra= 
3000; (a) downward flow, (b) upward flow 

For tr = 10 (narrow annulus), both types of the flow are 
realized when the Rayleigh number is larger than a critical value 
about 1900, below which only "upward" flow of a crescent-shaped 
eddy pattern appears. As the Rayleigh number exceeds another 
transition Rayleigh number of about 3000, crescent-shaped "up- 
ward" flow changes into a steady multicellular flow (Figure 7b), 
consistent with the results of Rue et al. (1985), and the flow 
remains steady up to Ra --- 104. "Downward" flow persists, even 
in the range in which a steady multicellular flow is observed. 
Streamlines and isotherms are illustrated in Figure 7. 

In the present numerical study, dual steady solutions were 
found for g > 0.3. When cr = 0.2, "downward" flow was not 
realized even at very large Rayteigh number ( R a = 2 ×  105), 
although the steady "downward" flow for tr = 0.3 was used as the 
initial value. In a short initial period, the eddy in the top region 
subsided, and the commonly observed crescent-shaped flow was 
established. The critical Rayleigh number above which dual 
steady solutions exist rapidly decreases as the inverse relative gap 
width cr increases, and tends to a finite limit as ~r ~ oo (Figure 8). 
The limiting value is conjectured to be 1708, because the flow at 
the top region of a very narrow annulus (or >> 1) can be approxi- 
mated as the convection between two horizontal planes heated 
from below (B6nard convection). In Figure 8, dashed lines repro- 
duced from the experimental work of Powe et al. (1969) indicate 
the transition Rayleigh number below which a steady two-dimen- 
sional flow prevails. 

In the "downward" flow, this study defines Ss as the angle 
representing the location of the separation point between the 
two rolls (see Figure 3b). The size of the counter-rotating eddy in 
the top region can be estimated by ~b s at the inner and outer 
cylinders. Some values of ~b s as a function of tr and Ra are given 

Figure 7 Streamlines and isotherms when cr=lO: (a) 
downward flow with Ra=2000; (b) multicellular upward 
flow with Ra = 3000 

Natural convection in annular spaces: J-S. Yoo 

6 l \  a:dual solutions 
~\\ o : o n e  s o l u t i o n  

\ 

M 4- ~al 
," ', , 

0 5 i0 
O" ( D i / L )  

Figure 8 Map of the downward and upward flows on the 
Ra-(r plane; (o-on ly  upward flow exists); (A=two flows are 
coexisting); continuous line represents the critical Rayleigh 
number (Ra= Racr) above which dual steady solutions exist; 
dashed lines reproduced from the experimental work of 
Powe et al. (1969) indicate the transition Rayleigh number 
below which a steady 2-D flow prevails 

in Table 2. In general, the counter-rotating eddy is approximately 
square-shaped. ~b s is increased as tr decreases. However, it does 
not exceed "rr/4 at the inner cylinder where the hot region of 

> +s drives the fluid upward. For ~ = 0.5 and 2, Ss is not 
much affected by Ra. Figure 9 illustrates the locations of the 

Table 2 Angles (~s) locating the separation points 
between two rolls in the "downward" flow (see Figure 3b) 

~b S 
~r Ra (inner, outer) 

0.3 100,000 (36.9, 49.4) 
0.5 15,000 (39.5, 39.7) 
0.5 20,000 (41.0, 41.9) 
0.5 30,000 (41.8, 44.1 ) 
0.5 50,000 (42.3, 46.2) 
0.5 100,000 (43.0, 48.4) 
O. 5 200,000 (43.1,50.0) 
0.7 20,000 (43.6, 42.2) 
1.0 20,000 (42.5, 41.0) 
2.0 3500 (32.0, 25.1 ) 
2.0 5000 (36.7, 29.4) 
2.0 10,000 (38.6, 33.9) 
2.0 20,000 (37.1,36.0) 
2.0 50,000 (33.3, 36.3) 
2.0 100,000 (31.3, 35.6) 
4.0 2500 (20.7, 17.5) 
6.0 2200 (15.4, 13.6) 
8.0 2000 (11.0, 10.1) 
10.0 1900 (7.4, 6.9) 
10.0 2000 (9.6, 8.9) 
10.0 3000 (13.2, 11.9) 
10.0 5000 (16.6, 14.7) 
10.0 7000 (18.9, 16.4) 
10.0 10,000 (21.4, 18.2) 

The unit of ~b s is degree; the terms "'inner" and "outer" 
represent the inner and outer cylinders, respectively 
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( c ' ° ~ /  
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0 i i i i  i i i i i  i i  i I i  i i i l t l  i I i  i i  i i  i i i  i 
3 4 5 6 

Log(Ra) 
Figure 9 Location of the separating streamline of down- 
ward f low measured by the arc length / from the top 
(~b= 0): (a) or=0.5; (b) or= 1.25; (c) or= 10; the letters "' i" and 
" 'o" denote the inner and outer cylinders, respectively 

separating streamline at the inner and outer cylinders as mea- 
sured by arc lengths from the top as functions of Ra for or = 
0.5,1.25,10. 

The overall Nusselt numbers are shown in Figure 10 as 
functions of Rayleigh number. For a very wide annulus (or < 0.7), 
Nu for "upward" flow is found slightly larger than that for 
"downward" flow, but the opposite tendency has been observed 
for 1 <or < 8.5. 

To examine the process to steady "downward" flow from an 
initially quiescent and isothermal state, the transient develop- 
ment of flow patterns and isotherms for ~r = 6, when the outer 
surface is suddenly cooled to Ra = 104 is presented in Figure 11. 
At the very early time (t = 0.01), a prominent roll is created with 
the center near the outer cylinder and ~ = 90 ° (Figure lla). The 
physical mechanism responsible for the creation of the roll is 
obvious: when the density (temperature) gradient has a compo- 
nent orthogonal to gravitational field, the fluid motion sets in, 
however small the component is. As the time elapses (t ~ 0.15), 
the center of roll descends, and an unstably stratified stagnant 
region near the top expands (Figure llb). After a while, the 
center ascends, and the boundary layer adjacent to the inner 

, ..... , . . . . . . . . . . . .  

3 3.5 4 4.5 5 5.5 
Log(R=) 

Figure 10 Overall Nusselt numbers as a function of 
Rayleigh number for o '=0 .5  (a), 1.25 (b), and 10 (c); letters 
"1"" and " 2 "  denote downward and upward f lows, respec- 
tively 

Figure 11 Transient development of f low patterns and 
isotherms for or= 6 and Ra = 10,000 when the outer cylinder 
is suddenly cooled; the initial conditions are ~ = co=O and 
9 = 1, and the outer cylinder is suddenly cooled to 9=0 :  (a) 
t=0 .01 ;  (b) t=O.11;  (c) t----1.06; (d) steady state 

cylinder separates at a point other than the top, and a slim 
counter-rotating eddy is formed in the thermally unstable region 
(Figure llc). The eddy formed in the top region gradually ex- 
pands, and a steady motion consisted with two counter-rotating 
eddies ("downward" flow) is established (Figure lld). For the 
purpose of comparison, the transient development of flow pat- 

Figure 12 Transient development of f low patterns and 
isotherms for or= 6 and Ra= 10,OOO when the inner cylinder 
is suddenly heated; the initial conditions are 0 = q~ = ~=O,  
and the inner cylinder is suddenly heated to 9=  1 : (a) t=O.01 ; 
(b) t =  0.11 ; (c) t = 1 .O6; (d) steady state 
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terns and isotherms for the same Rayleigh number  (Ra = 104), 
when the inner cylinder is suddenly heated to Ra = 104 from an 
isothermal quiescent state (0 = q = to = 0) is presented in Figure 
12. The results agree qualitatively with those by Casterejon and 
Spalding (1988). In steady state, the streamlines are of crescent- 
shaped eddy pattern. 

For the occurrence of "downward" flow, it seems necessary 
that  the boundary layer on the inner cylinder separates at a point 
other  than the top of the cylinder to trigger an eddy in the 
thermally unstable top region. Once a small eddy has been 
triggered, the eddy grows and finally "downward" flow consisting 
of two counter-rotating eddies develops, if the unstable stratifica- 
tion in the top region is sufficiently strong. For  a narrow annulus 
in which the radius of curvature is large, the boundary layer on 
the inner cylinder is more likely to separate at a point other  than 
the top. It is also to be noted that  "downward" flow has not been 
obtained in the present numerical experiment, when "upward" 
flow is used as the initial condition. This implies that once 
"upward '  flow has been established, "downward" flow cannot  be 
obtained by changing the Rayleigh number.  Only the transition 
from "downward" to "upward"  flow occurs at Ra = Racr. 
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